自动驾驶汽车轨迹规划方法综述A Review on Techniques of Trajectory Planning for Automated Driving Vehicle
吕贵林,高洪伟,陈涛,田鹤,韩爽
摘要(Abstract):
作为自动驾驶车辆的重要组成部分,轨迹规划是影响自动驾驶智能化水平的关键。综述10年来智能驾驶车辆轨迹规划方法并将这些算法分为基于图搜索、基于采样、基于数学优化、曲线插值和机器学习5类。针对每类算法进行了阐述,阐述算法在实际场景中的应用并分析了其优缺点。最后指出了目前依然存在的问题和挑战,并总结了未来研究发展方向。
关键词(KeyWords): 轨迹规划;路径规划;自动驾驶
基金项目(Foundation):
作者(Author): 吕贵林,高洪伟,陈涛,田鹤,韩爽
DOI: 10.19822/j.cnki.1671-6329.20220199
参考文献(References):
- [1] DAVID G, JOSHUE P, VICENTE M, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4):1135-1145.
- [2] DIJKSTRA EW. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1):269-271.
- [3] REINHOLTZ C, HONG D, WICKS A, et al. Odin:Team victortango’s entry in the darpa urban challenge[J]. Journal of Field Robotics, 2008, 25(8):467-492.
- [4] KALA R, WARWICK K. Multi-level planning for semi-autonomous vehicles in traffic scenarios based on separation maximization[J]. Journal of Intelligent&Robotic Systems,2013, 72(3):559-590.
- [5] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
- [6] LEEDY B M, PUTNEY J S, BAUMAN C, et al. Virginia tech’s twin contenders:A comparative study of reactive and deliberative navigation[C]//The 2005 DARPA Grand Challenge. Springer Tracts in Advanced Robotics. Springer:Berlin Heidelberg, 2007:155-182.
- [7] ZIEGLER J, WERLING M, SCHRODER J. Navigating carlike robots in unstructured environments using an obstacle sensitive cost function[C]//2008 IEEE Intelligent Vehicles Symposium. IEEE:Eindhoven, Netherlands, 2008.
- [8] FASSBENDER D, HEINRICH B C, WUENSCHE H J. Motion planning for autonomous vehicles in highly constrained urban environments[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). IEEE:Daejeon, Korea(South), 2016.
- [9] PéREZ-GILLó, BAREA R, LóPEZ-GUILLéN E, et al.Deep Reinforcement Learning based control algorithms:Training and validation using the ROS Framework in CARLA Simulator for Self-Driving applications[C]//2021 IEEE Intelligent Vehicles Symposium(IV). IEEE:Nagoya, Japan,2021:1268-1273.
- [10] STENTZ A. Optimal and efficient path planning for partially-known environments[C]//Proceedings of the 1994IEEE International Conference on Robotics and Automation. IEEE:San Diego, CA, USA, 1994.
- [11] ANTHONY S. The focussed D*algorithm for real-time replanning[C]//IJCAI'95:Proceedings of the 14th international joint conference on Artificial intelligence, 1995:1652-1659.
- [12] KOENIG S, LIKHACHEV M. Fast replanning for navigation in unknown terrain[J]. IEEE Transactions on Robotics, 2005. 21(3):354-363.
- [13] PIVTORAIKO M, KNEPPER R A, KELLY A. Differentially constrained mobile robot motion planning in state lattices[J]. Journal of Field Robotics, 2009, 26(3):308-333.
- [14] MCNAUGHTON M, URMSON C, DOLAN J, et al. Motion planning for autonomous driving with a conformal spatiotemporal lattice[C]//2011 IEEE International Conference on Robotics and Automation. IEEE:Shanghai, China,2011.
- [15] XU W, WEI J Q, DOLAN J M, et al. A real-time motion planner with trajectory optimization for autonomous vehicles[C]//2012 IEEE International Conference on Robotics and Automation. IEEE:Saint Paul, MN, USA, 2012.
- [16] LI X, SUN Z, CAO D, et al. Real-time trajectory planning for autonomous urban driving:Framework, algorithms, and verifications[J]. IEEE/ASME Transactions on Mechatronics, 2015, 21(2):740-753.
- [17] ELBANHAWI M, SIMIC M. Sampling-based robot motion planning:A review[J]. IEEE Access, 2014, 2(1):56-77.
- [18] LAVALLE S M. Randomized kinodynamic planning[J].The International Journal of Robotics Research, 2001, 20(5):378-400.
- [19] KUFFNER J J, LAVALLE S M. RRT-connect:An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings(Cat. No. 00CH37065). IEEE:Francisco, CA,USA, 2000:995-1001.
- [20] KUWATA Y, TEO J, MEMBER S, et al. Real-time motion planning with applications to autonomous urban driving[J].IEEE Transactions on Control Systems Technology, 2009,17(5):1105-1118.
- [21] KARAMAN S, WALTER M R, PEREZ A, et al. Anytime motion planning using the RRT*[C]//2011 IEEE International Conference on Robotics and Automation. IEEE:Shanghai, China, 2011.
- [22] KLEMM S, OBERL?NDER J, HERMANN A, et al. Rrt*-connect:Faster, asymptotically optimal motion planning[C]//2015 IEEE international conference on robotics and biomimetics(ROBIO). IEEE:Zhuhai, China, 2015:1670-1677.
- [23] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*:Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE:Chicago, IL, USA,2014:2997-3004.
- [24] MASHAYEKHI R, IDRIS M Y I, ANISI M H, et al. Informed RRT*-connect:An asymptotically optimal singlequery path planning method[J]. IEEE Access, 2020, 8(1):19842-19852.
- [25] BENENSON R, PETTI S, FRAICHARD T, et al. Integrating perception and planning for autonomous navigation of urban vehicles[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE:Beijing, China,2006.
- [26] DOLGOV D, THRUN S, MONTEMERLO M, et al. Path planning for autonomous vehicles in unknown semi-structured environments[J]. The International Journal of Robotics Research, 2010, 29(5):485-501.
- [27] ZIEGLER J, BENDERET P, SCHREIBER M, et al. Making bertha drive—An autonomous journey on a historic route[J]. IEEE Intelligent Transportation Systems Magazine, 2014 6(2):8–20.
- [28] ZIEGLER J, BENDER P, DANG T, et al. Trajectory planning for bertha—A local, continuous method[C]//2014IEEE Intelligent Vehicles Symposium Proceedings. IEEE:Dearborn, MI, USA, 2014.
- [29] HOWARD T M, KELLY A. Optimal rough terrain trajectory generation for wheeled mobile robots[J]. International Journal of Robotics Research, 2007, 26(2):141-166.
- [30] URMSON C, ANHALT J, BAGNELL D, et al. Autonomous driving in urban environments:Boss and the urban challenge[J]. Journal of Field Robotics, 2008, 25(8):425-466.
- [31] LI X, SUN Z, CAO D, et al. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles[J]. Mechanical Systems and Signal Processing, 2017, 87:118-137.
- [32] CARDOSO V, OLIVEIRA J, TEIXEIRA T, et al. A modelpredictive motion planner for the iara autonomous car[C]//2017 IEEE international conference on robotics and automation(ICRA). IEEE:Singapore, 2016.
- [33] REEDS J A, SHEPP R A. Optimal paths for a car that goes both forwards and backwards[J]. Pacific Journal of Mathematics, 1990, 145(2):367-393.
- [34] BREZAK M, PETROVIC I. Real-time approximation of clothoids with bounded error for path planning applications[J]. IEEE Transactions on Robotics, 2014, 30(2):507-515.
- [35] CHEBLY A, TAGNE G, TALJ R, et al. Local trajectory planning and tracking of autonomous vehicles, using clothoid tentacles method[C]//IEEE intelligent vehicles symposium. IEEE, 2015.
- [36] MOUHAGIR H, CHERFAOUI V, TALJ R, et al. Trajectory planning for autonomous vehicle in uncertain environment using evidential grid[J]. IFAC-PapersOnLine, 2017,50(1):12545-12550.
- [37] MOUHAGIR H, TALJ R, CHERFAOUI V, et al. Integrating safety distances with trajectory planning by modifying the occupancy grid for autonomous vehicle navigation[C]//IEEE International Conference on Intelligent Transportation Systems. IEEE:Rio de Janeiro, Brazil, 2016.
- [38] BENLOUCIF A, NGUYEN A T, SENTOUH C, et al. Cooperative trajectory planning for haptic shared control between driver and automation in highway driving[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12):9846-9857.
- [39] CHU K, LEE M, SUNWOO M. Local Path Planning for Off-Road Autonomous Driving With Avoidance of Static Obstacles[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4):1599-1616.
- [40] HU X, CHEN L, TANG B, et al. Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles[J]. Mechanical Systems and Signal Processing, 2018, 100(2):482-500.
- [41] ARADI S. Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles[J/OL]. Machine Learning,(2020-01-30)[2022-12-28]. https://arxiv.org/abs/2001.11231.
- [42] ZHOU C M, HUANG B D, FRNTI P. A review of motion planning algorithms for intelligent robotics[J/OL]. Robotics,(2021-02-05)[2022-12-28]. https://arxiv.org/abs/2102.02376.
- [43] HUVAL B, WANG T, TANDON S, et al. An Empirical Evaluation of Deep Learning on Highway Driving[J/OL].Robotics,(2015-04-17)[2022-12-28]. https://arxiv.org/abs/1504.01716.
- [44] MILLER M. CAMPBELL D. Huttenlocher, et al. Team cornell’s skynet:Robust perception and planning in an urban environment[J]. Journal of Field Robotics, 2008, 25(8):493-527.
- [45] THRUN S, MONTEMERLO M, DAHLKAMP H, et al.Stanley:The robot that won the darpa grand challenge[J].Journal of Field Robotics, 2006, 23(9):661-692.
- [46] HAVLAK F, CAMPBELL M. Discrete and continuous,probabilistic anticipation for autonomous robots in urban environments[J]. IEEE Transactions on Robotics, 2014, 30(2):461-474.
- [47] TRAN Q, FIRL J. Modelling of traffic situations at urban intersections with probabilistic non-parametric regression[C]//Intelligent Vehicles Symposium(IV). IEEE:Gold Coast, QLD, Australia, 2013.
- [48] DOU Y, YAN F, FENG D. Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics.IEEE:Banff, AB, Canada, 2016.
- [49]《中国公路学报》编辑部.中国汽车工程学术研究综述·2017[J].中国公路学报, 2017, 30(6):1-197.
- [50] REHDER E, QUEHL J, STILLER C. Driving like a human:Imitation learning for path planning using convolutional neural networks[C]//IEEE International Conference on Robotics and Automation, 2017.
- [51] SUN L T, PENG C, ZHAN W, et al. A fast integrated planning and control framework for autonomous driving via imitation learning[C]//ASME 2018 Dynamic Systems and Control Conference, 2018.
- [52] PAXTON C, RAMAN V, HAGER G D, et al. Combining neural networks and tree search for task and motion planning in challenging environments[J/OL]. Robotics,(2017-05-22)[2022-12-28]. https://arxiv.org/abs/1703.07887.
- [53] YU L, SHAO X, WEI Y, et al. Intelligent land-vehicle model transfer trajectory planning method based on deep reinforcement learning[J]. Sensors, 2018, 18(9):1-22.
- [54] BUEHLER M, IAGNEMMA K, SINGH S. The 2005 DARPA grand challenge:the great robot race[M]. Berlin:Springer, 2007.
- [55] BUEHLER M, IAGNEMMA K, SINGH S. The DARPA Urban Challenge:Autonomous Vehicles in City Traffic[M].Berlin:Springer, 2010.
- [56] MONTEMERLO M, BECKER J, BHAT S, et al. Junior:The Stanford entry in the urban challenge[J]. Journal of Field Robotics, 2008, 25(9):569-597.