基于深度学习的车辆目标检测算法综述Survey of Vehicle Object Detection Algorithms Based on Deep Learning
苏山杰,陈俊豪,张之云
摘要(Abstract):
近20年来,随着以物联网技术,计算机视觉技术为代表的核心技术蓬勃发展,基于深度学习的目标检测算法在各个领域都受到了较高的重视,而车辆目标检测是基于深度学习的目标检测中的一个重要研究领域,也是应用在智能驾驶、智能交通系统中非常重要的一部分。针对车辆目标检测任务,首先对深度学习的车辆目标检测进一步探讨,提出检测任务的重点、难点及发展现状,以时间线对卷积神经网络下车辆目标检测算法进行概括,并对目前2种主流的基于候选框和基于回归的车辆目标检测算法进行总结。伴随着目标检测算法的更加轻量化,检测性能更加优越,将在嵌入式设备得到应用,以提高检测任务的效率。在未来自动驾驶,智能交通系统领域对于安全性,实时性的要求会更高,使得车辆目标检测算法有较好的发展前景。
关键词(KeyWords):
基金项目(Foundation):
作者(Author): 苏山杰,陈俊豪,张之云
DOI: 10.19822/j.cnki.1671-6329.20220011
参考文献(References):
- [1]李鹏飞,刘瑶,李珣,等.YOLO9000模型的车辆多目标视频检测系统研究[J].计算机测量与控制,2019,27(8):21-24.
- [2]宋欢欢,惠飞,景首才,等.改进的Retina Net模型的车辆目标检测[J].计算机工程与应用,2019,55(13):225-230.
- [3]李明熹,林正奎,曲毅.计算机视觉下的车辆目标检测算法综述[J].计算机工程与应用,2019,55(24):20-28.
- [4]CIRE?AN D C,MEIER U,MASCI J,et al.High-performance neural networks for visual object classification[J].ar Xiv preprint ar Xiv:1102.0183,2011.
- [5]周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
- [6]LECUN Y,BOTTOU L,BENGIO Y,ET al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
- [7]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image Net classification with deep convolutional neural networks[J].Advances in neural information processing systems,2012(25):1-9.
- [8]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].ar Xiv preprint ar Xiv:1409.1556,2014.
- [9]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2015:1-9.
- [10]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2016:770-778.
- [11]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2017:4700-4708.
- [12]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].ar Xiv preprint ar Xiv:1704.04861,2017.
- [13]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2018:6848-6856.
- [14]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2014:580-587.
- [15]GU C,LIM J J,ARBELáEZ P,Et al.Recognition using regions[C]//2009 IEEE Conference on computer vision and pattern recognition,2009:1030-1037.
- [16]寇大磊,权冀川,张仲伟.基于深度学习的目标检测框架进展研究[J].计算机工程与应用,2019,55(11):25-34.
- [17]HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE transactions on pattern analysis and machine intelligence,2015,37(9):1904-1916.
- [18]GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEEinternational conference on computer vision,2015:1440-1448.
- [19]REN S,HE K,Girshick R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transaction on Pattern Analysis&Machine Intelligence,2017,39(6):1137-1149.
- [20]方路平,何杭江,周国民.目标检测算法研究综述[J].计算机工程与应用,2018,54(13):11-18.
- [21]DAI J,LI Y,HE K,et al.R-FCN:Object detection via region-based fully convolutional networks[C]//NIPS’16:Proceedings of the 30thInternational Conference on Neural information Processing Systems,2016:379-387.
- [22]HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE international conference on computer vision,2017:2961-2969.
- [23]CAI Z,VASCONCELOS N.Cascade r-cnn:Delving into high quality object detection[C]//Proceedings of the IEEEconference on computer vision and pattern recognition,2018:6154-6162.
- [24]LI Y,CHEN Y,WANG N,et al.Scale-aware trident networks for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6054-6063.
- [25]REDMON J,DIVVALA S,Girshick R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2016:779-788.
- [26]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition,2017:7263-7271.
- [27]REDMON J,FARHADI A.Yolov3:An incremental improvement[J].ar Xiv preprint ar Xiv:1804.02767,2018.
- [28]BOCHKOVSKIY A,WANG C Y,Liao H Y M.Yolov4:Optimal speed and accuracy of object detection[J].ar Xiv preprint ar Xiv:2004.10934,2020.
- [29]JOCHER G,NISHIMURA K,MINEEVA T,VILARI?O R.YOLOv5[EB/OL].(2020)[2021-1-10].https://github.com/ultralytics/yolov5.Accessed january 2021.
- [30]SHARMA V,MIR R N.A comprehensive and systematic look up into deep learning based object detection techniques:A review[J].Computer Science Review,2020,38(11):100301.
- [31]WU X,SAHOO D,HOI S C H.Recent advances in deep learning for object detection[J].Neurocomputing,2020,396(7):39-64.
- [32]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot multibox detector[C]//European conference on computer vision,Springer,Cham,2016:21-37.
- [33]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision,2017:2980-2988.
- [34]LAW H,DENG J.Cornernet:Detecting objects as paired keypoints[C]//Proceedings of the European conference on computer vision (ECCV),2018:734-750.
- [35]DUAN K,BAI S,XIE L,et al.Centernet:Keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision,2019:6569-6578.
- [36]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVFconference on computer vision and pattern recognition,2020:10781-10790.
- [37]张富凯,杨峰,李策.基于改进YOLOv3的快速车辆检测方法[J].计算机工程与应用,2019,55(2):12-20.
- [38]郑冬,李向群,许新征.基于轻量化SSD的车辆及行人检测网络[J].南京师大学报(自然科学版),2019(1):73-81.
- [39]LIU Y,SUN P,WERGELES N,et al.A survey and performance evaluation of deep learning methods for small object detection[J].Expert Systems with Applications,2021,172(6):114602.
- [40]周文鹏,路林,王建明.多传感器信息融合在无人驾驶中的研究综述[J].汽车文摘,2022(1):45-51.
- [41]罗会兰,陈鸿坤.基于深度学习的目标检测研究综述[J].电子学报,2020,48(6):1230-1239.