车用夹芯结构成形工艺研究进展Research Progress on Molding Process of Automotive Sandwich Structure
卢春达,刘百川,马文婷,梁鸿宇,马芳武
摘要(Abstract):
三明治夹芯结构在汽车轻量化、承载与吸能结构领域有着广泛应用,不同成形工艺制备的芯材结构在力学性能方面具有不同的优缺点。综述了近年来复合材料夹芯结构主要采用的制备工艺以及发展现状,深入分析和讨论了采用嵌锁组装工艺制备的复合材料三明治芯材结构特点、应用环境和载荷工况,分析结果表明该工艺具有独特的优势,阐述了采用嵌锁组装工艺在制备夹芯结构时采用的改进措施。最后总结了嵌锁组装工艺在蜂窝结构制备过程中的发展潜力,并对其未来发展方向进行了展望。
关键词(KeyWords): 汽车轻量化;夹芯结构;复合材料;嵌锁组装工艺;碰撞吸能
基金项目(Foundation): 吉林省科技发展计划项目(YDZJ202102CXJD017);; 吉林大学研究生创新研究计划(101832020CX132)
作者(Author): 卢春达,刘百川,马文婷,梁鸿宇,马芳武
DOI: 10.19822/j.cnki.1671-6329.20220115
参考文献(References):
- [1]庾晋,白木.汽车用材及工艺的革新[J].上海汽车, 2003(1):31-34.
- [2]冯仁杰,于九明.蜂窝夹芯复合板及其在汽车工业中的应用[J].汽车工艺与材料, 2003(8):30-32.
- [3]杜慧勇,吴鹤翔,王铁峰,等.复合材料--三明治夹芯板在车辆上的应用[J].时代汽车, 2019(3):162-163.
- [4]张伟,何鹏,颜磊,等.一种汽车复合材料电池箱三明治结构:202020847309.5[P]. 2020-05-20.
- [5]陶本一.泡沫铝夹芯结构性能分析与在汽车结构中的应用研究[D].广州:华南理工大学, 2012.
- [6] CHEN X, YU G, WANG Z, et al. Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs[J]. Composite Structures, 2021, 255:112984.
- [7] WEI X, WU Q, GAO Y, et al. Bending characteristics of allcomposite hexagon honeycomb sandwich beams:experimental tests and a three-dimensional failure mechanism map[J].Mechanics of Materials, 2020, 148:103401.
- [8] HARIZI W, ANJOUL J, ACOSTA SANTAMARIA VA, et al. Mechanical behavior of carbon-reinforced thermoplastic sandwich composites with several core types during threepoint bending tests[J]. Composite Structures, 2021, 262(4):113590.
- [9] WANG Z, LI Z, XIONG W. Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet[J].Composites Part B:Engineering, 2019,164:280-286.
- [10]黄洁,马兆侠,兰胜威,等.带隔热层蜂窝夹层结构的超高速撞击特性研究[J].宇航学报, 2010, 31(8):2043-2049.
- [11]荣吉利,朱宇博,宋乾强,等.异面压缩下六边形铝蜂窝平均塑性坍塌盈利研究[J].宇航学报, 2018, 39(3):257-263.
- [12]吴林志,熊健,马力,等.新型复合材料点阵结构的研究进展[J].力学进展, 2012, 42(1):41-67.
- [13] PEHLIVAN L, BAYKASO?LU C. An experimental study on the compressive response of CFRP honeycombs with various cell configurations[J].Composites Part B:Engineering, 2019, 162:653-661.
- [14] LIU J L, LIU J Y, MEI J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores[J].Composites Science&Technology, 2018, 159:87-102.
- [15] VITALE J P, FRANCUCCI G, XIONG J, et al. Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels[J]. Composites Part A:Applied Science and Manufacturing, 2017, 94:217-225.
- [16] SHROFF S, ACAR E, KASSAPOGLOU C. Design, analysis, fabrication, and testing of composite grid-stiffened panels for aircraft structures[J].Thin-Walled Structures,2017, 119:235-246.
- [17] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J].Advanced Materials, 2015, 26(34):5930-5935.
- [18] SUGIYAMA K, MATSUZAKI R, UEDA M, et al. 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension[J]. Composites Part A:Applied Science and Manufacturing, 2018, 113:114-121.
- [19]陈向明,姚辽军,果立成,等. 3D打印连续纤维增强复合材料研究现状综述[J].航空学报, 2021, 42(10):174-198.
- [20]熊健,韦兴宇,李达夫.一种复合材料蜂窝芯子及其制备方法:201910866090.5[P]. 2019-09-12.
- [21] WANG Z, ZHANG G, ZHU Y, et al. Theoretical analysis of braiding strand trajectories and simulation of three-dimensional parametric geometrical models for multilayer interlock three-dimensional tubular braided preforms[J].Textile Research Journal, 2019, 89(19-20):4306-4322.
- [22] WANG X W, WEI K, WANG K Y, et al. Effective thermal conductivity and heat transfer characteristics for a series of lightweight lattice core sandwich panels[J].Applied Thermal Engineering, 2020, 173:115205.
- [23] YAN H B, ZHANG Q C, CHEN W J, et al. An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance[J].Applied Thermal Engineering, 2019, 166:114687.
- [24] YAN H B, YANG X H, LU T J, et al. Convective heat transfer in a lightweight multifunctional sandwich panel with Xtype metallic lattice core[J].Applied Thermal Engineering,2017, 127:1293-1304.
- [25] QUAN C, HAN B, HOU Z, et al. 3D printed continuous fiber reinforced composite auxetic honeycomb structures[J].Composites Part B:Engineering, 2020, 187:107858.
- [26] WEI X, LI D, XIONG J. Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach[J]. Composites Science and Technology, 2019, 184:107878.
- [27] WANG B, WU L Z, MA L, et al. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core[J]. Materials and Design, 2010, 31(5):2659-2663.
- [28] WANG B, ZHANG G Q, HE Q L, et al. Mechanical behavior of carbon fiber reinforced polymer composite sandwich panels with 2-D lattice truss cores[J]. Materials&Design,2014, 55:591-596.
- [29] XIONG J, MA L, WU L, et al. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures[J]. Composite Structures, 2010, 92(11):2695-2702.
- [30] XIONG J, MA L, VAZIRI A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting[J]. Acta Materialia, 2012, 60(13):5322-5334.
- [31] STOCCHI A, COLABELLA L, CISILINO A, et al. Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics[J].Materials&Design, 2014, 55:394-403.
- [32] VITALE J P, FRANCUCCI G, XIONG J, et al. Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels[J]. Composites Part A:Applied Science and Manufacturing, 2017, 94(4):217-225.
- [33] FAN H L, MENG F H, YANG W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Composite Structures, 2007, 81(4):533-539.
- [34] HAN D Y, TSAI S W. Interlocked Composite Grids Design and Manufacturing[J]. Journal of Composite Materials,2003, 37(4):287-316.
- [35]王世勋.复合材料夹芯结构的力学性能[D].哈尔滨:哈尔滨工业大学, 2010.WANG S X. Mechanical Properties of Composites Sandwich Structures[D]. Harbin:Harbin Institute of Technology, 2010.
- [36] RUSSELL B P, DESHPANDE V S, WADLEY H N. Quasistatic Deformation and Failure Modes of Composite Square Honeycombs[J]. Journal of Mechanics of Materials and Structures, 2008, 3(7):1315-1340.
- [37] ZHOU H, LIU T, GUO R, et al. Numerical Investigation on Water Blast Response of Freestanding Carbon Fiber Reinforced Composite Sandwich Plates with Square Honeycomb Cores[J]. Applied Composite Materials, 2018, 26(2):605-625.
- [38]周昊,郭锐,刘荣忠,等.碳纤维增强聚合物复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟[J].复合材料学报, 2019, 36(5):1226-1234.ZHOU H, GUO R, LIU R Z, et al. Simulations on Dynamic Responses of Carbon Fiber Reinforced Polymer Composite Sandwich Plates with Square Honeycomb Cores Subjected to Water Blasts[J]. Acta Materiae Compositae Sinica,2019, 36(5):1226-1234.
- [39]杨志韬,于国财,刘鑫,等.多级复合材料蜂窝结构的力学性能[J].复合材料学报, 2019, 36(9):2110-2118.YANG Z T, YU G C, LIU X, et al. Mechanical Properties of Hierarchical Composite Honeycomb Structures[J].Acta Materiae Compositae Sinica, 2019, 36(9):2110-2118.
- [40]张笑瑜.多级复合材料蜂窝结构的力学性能研究[D].哈尔滨:哈尔滨工业大学, 2017.ZHANG X Y. Mechanical Property Study of Hierarchical Composite Honeycomb Structure[D]. Harbin:Harbin Institute of Technology, 2017.
- [41]王志鹏,李剑峰,李海波,等.嵌锁式碳纤维/树脂基复合材料方形蜂窝夹芯结构的力学性能及损伤失效[J].复合材料学报, 2022, 39(4):1778-1789.WANG Z P, LI J F, LI H B, et al. Mechanical Properties and Damage Failure of Carbon Fiber Reinforced Polymer Composite Sandwich Structure with Square Honeycomb Core Using the Interlocking Method[J]. Acta Materiae Compositae Sinica, 2022, 39(4):1778-1789.
- [42] VITALE P, FRANCUCCI G, RAPP H, et al. Manufacturing and Compressive Response of Ultra-lightweight CFRP Cores[J]. Composite Structures, 2018, 194:188-198.
- [43] VITALE P, FRANCUCCI G, RAPP H, et al. Shear Response of Ultra-lightweight CFRP Cores[J]. Composite Structures, 2020, 238:111879.
- [44] FENG L J, XIONG J, YANG L H, et al. Shear and Bending Performance of New Type Enhanced Lattice Truss Structures[J]. International Journal of Mechanical Sciences,2017, 134:589-598.
- [45] FENG L J, WU L Z, YU G C, et al. An Hourglass Truss Lattice Structure and Its Mechanical Performances[J]. Material and Design, 2016, 99:581-591.
- [46] FINNEGAN K, KOOISTRA G, WADLEY H N G, et al.The Compressive Response of Carbon Fiber Composite Pyramidal Truss Sandwich Cores[J]. International Journal of Materials Research, 2007, 98(12):1264-1272.
- [47]张国旗.复合材料点阵结构吸能特性和抗低速冲击性能研究[D].哈尔滨:哈尔滨工业大学, 2014.ZAHNG G Q. ENERGY ABSORPTION and LOW VELOCITY IMPACT DAMAGE RESISTANCE of COMPOSITE LATTICE STRUCTURES[D]. Harbin:Harbin Institute of Technology, 2014.
- [48] COTE F, BIAGI R, BART-SMITH H, et al. Structural Response of Pyramidal Core Sandwich Columns[J]. International Journal of Solids and Structures, 2008, 44(10):3533-3556.
- [49] COTE F, FLECK N A, DESHPANDE V S. Fatigue Performance of Sandwich Beams with a Pyramidal Core[J]. International journal of fatigue, 2008, 29(8):1402-1412.
- [50] GEORGE T, DESHPANDE V S, WADLEY H N G. Mechanical Response of Carbon Fiber Composite Sandwich Panels with Pyramidal Truss Cores[J]. Composites Part A:Applied Science and Manufacturing, 2013, 47:31-40.
- [51]吴倩倩.新型复合材料金字塔点阵结构的制备及力学性能研究[D].哈尔滨:哈尔滨工业大学, 2015.WU Q Q. Fabrication and Mechanical Performance of New Composite Pyramidal Lattice Structures[D]. Harbin:Harbin Institute of Technology, 2015.
- [52] WU Q Q, MA L, WU L Z, et al. A Novel Strengthening Method for Carbon Fiber Composite Lattice Truss Structures[J]. Composite Structures, 2016, 153:585-592.
- [53] LI X D, XIONG J, MA L, et al. Effect of Vacuum Thermal Cycling on the Compression and Shear Performance of Composite Sandwich Structures Containing Pyramidal Truss Cores[J]. Composites Science and Technology, 2018,158:67-78.
- [54]李晓东.热环境对复合材料金字塔点阵夹芯结构力学性能的影响[D].哈尔滨:哈尔滨工业大学, 2018.LI X D. The Influence of Thermal Environment on the Mechanical Properties of Composite Pyramidal Lattice Sandwich Structure[D]. Harbin:Harbin Institute of Technology,2018.
- [55] HU B, WU L Z, XIONG J, et al. Mechanical Properties of a Node-interlocking Pyramidal Welded Tube Lattice Sandwich Structure[J]. Mechanics of Materials, 2020, 129:290-305.
- [56]王信涛.三维有序负泊松比结构的设计、制备与力学性能表征[D].哈尔滨:哈尔滨工业大学, 2018.WANG X T. The Design, Fabrication and Mechanical Characterization of Three-dimensional Periodic Auxetic Cellular Structures[D]. Harbin:Harbin Institute of Technology, 2018.
- [57] DU B, CHEN L M, WU W J, et al. A Novel Hierarchical Thermoplastic Composite Honeycomb Cylindrical Structure:Fabrication and Axial Compressive Properties[J].Composites Science and Technology, 2018, 164:136-145.
- [58] GUO Y G, CHEN L M, ZHU C L, et al. Fabrication and Axial Compression Test of Thermoplastic Composite Cylindrical Sandwich Structures with Hierarchical Honeycomb Core[J]. Composite Structures, 2021, 275:114453.
- [59]高飞.面向变体结构的蜂窝结构设计与制造研究[D].大连:大连理工大学, 2021.GAO F. Research on Design and Manufacturing of Honeycomb Structure of Morphing Structures[D]. Dalian:Dalian University of Technology, 2021.
- [60]熊健,杜昀桐,杨雯,等.轻质复合材料夹芯结构设计及力学性能研究最新进展[J].宇航学报, 2020, 41(6):749-760.XIONG J, DU Y T, LANG W. Research Progress on Design and Mechanical Properties of Lightweight Composite Sandwich Structures[J]. Journal of Astronautics, 2020, 41(6):749-760.
- [61] SONG S J, XIONG C, ZHENG J, et al. Compression, Bending, Energy Absorption Properties, and Failure Modes of Composite Kagome Honeycomb Sandwich Structure Reinforced by PMI Foams[J]. Composite Structures, 2021, 277:114611.
- [62] YANG H, MA L. 1D to 3D Multi-stable Architected Materials with Zero Poisson's Ratio and Controllable Thermal Expansion[J]. Materials and Design, 2020, 188:108430.