锂离子电池硅基负极用黏结剂研究进展Advances of Binders for Silicon-Based Anodes in Lithium-ion Batteries
张玉坤,邹朝辉,张云霞
摘要(Abstract):
具有硅基负极的锂离子电池,由于其理论比容量高、工作电压低的优点,被认为是最具前景的下一代锂离子电池。然而,锂化后硅基材料固有的较大体积膨胀以及由此产生的问题,严重制约着硅基负极材料的实际应用。总结了高弹性聚合物黏结剂、自修复聚合物黏结剂和导电聚合物黏结剂3种不同功能类型的聚合物黏结剂,对硅基负极用黏结剂的最新研究现状进行了分析和概述。并在此基础上,提出合理设计硅基负极用黏结剂方法和实现工业化生产建议。
关键词(KeyWords): 锂离子电池;硅基负极;黏结剂;聚合物;新能源汽车
基金项目(Foundation):
作者(Author): 张玉坤,邹朝辉,张云霞
DOI: 10.19822/j.cnki.1671-6329.20220177
参考文献(References):
- [1] PARK C W, LEE J H, SEO J K, et al. Graphene/PVDF Composites for Ni-rich Oxide Cathodes toward High-Energy Density Li-ion Batteries[J]. Materials, 2021, 14(9):2271-2281.
- [2] MICARI S, FOTI S, TESTA A, et al. Reliability assessment and lifetime prediction of Li-ion batteries for electric vehicles[J]. Electrical Engineering, 2022, 104(1):165-177.
- [3] KAP?, INAN A, ER M, et al. Li-ion battery cathode performance from the electrospun binary LiCoO2to ternary Li2CoTi3O8[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(11):8394-8402.
- [4] OH H H, JOO J. Colloidal synthesis of monodisperse ultrathin LiFePO4nanosheets for Li-ion battery cathodes[J]. Korean Journal of Chemical Engineering, 2021, 38(5):1052-1058.
- [5] WANG L, GENG M, DING X, et al. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(4):538-552.
- [6] ZHAO D, DONG C, PU X, et al. Facile Synthesis of Porous Coralline LiVO3as High-Performance Li-Ion Battery Cathodes[J]. ChemistrySelect, 2018, 3(2):592-598.
- [7] WEI C, OBROVAC M N. Small Molecule Slurry Additives for Si Alloy Coatings with CMC/SBR Binder[J]. Journal of The Electrochemical Society, 2019, 166(14):A3217-A3221.
- [8] IQBAL N, LEE S. Mechanical failure analysis of graphite anode particles with PVDF binders in Li-ion batteries[J]. Journal of The Electrochemical Society, 2018, 165(9):A1961-A1970.
- [9] LI J, CAI Y, WU H, et al. Polymers in lithium-ion and lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(15):2003239-2003285.
- [10] GUO Q, ZHENG Z. Rational design of binders for stable Li-S and Na-S batteries[J]. Advanced Functional Materials, 2020, 30(6):1907931-1907944.
- [11] ZOU F, MANTHIRAM A. A review of the design of advanced binders for high-performance batteries[J]. Advanced Energy Materials, 2020, 10(45):2002508-2002535.
- [12] IQBAL N, ALI Y, LEE S. Debonding mechanisms at the particle-binder interface in the Li-ion battery electrode[J].Journal of The Electrochemical Society, 2020, 167(6):060515-060526.
- [13] RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2(8):1-14.
- [14] ZHU B, WANG X, YAO P, et al. Towards high energy density lithium battery anodes:silicon and lithium[J]. Chemical Science, 2019, 10(30):7132-7148.
- [15] PAN Y, GAO S, SUN F, et al. Polymer Binders Constructed through Dynamic Noncovalent Bonds for High-Capacity Silicon-Based Anodes[J]. Chemistry-A European Journal, 2019, 25(47):10976-10994.
- [16] LUO Z, XU Y, GONG C R, et al. An ultraviolet curable silicon/graphite electrode binder for long-cycling lithium ion batteries[J]. Journal of Power Sources, 2021, 485(2):229348-229355.
- [17] LANDESFEIND J, ELDIVEN A, GASTEIGER H A. Influence of the binder on lithium ion battery electrode tortuosity and performance[J]. Journal of The Electrochemical Society, 2018, 165(5):A1122-A1128.
- [18] ZHENG M, FU X, WANG Y, et al. Poly(Vinylidene Fluoride)-Based Blends as New Binders for Lithium-Ion Batteries[J]. ChemElectroChem, 2018, 5(16):2288-2294.
- [19] NOTAKE K, GUNJI T, KOKUBUN H, et al. The application of a water-based hybrid polymer binder to a high-voltage and high-capacity Li-rich solid-solution cathode and its performance in Li-ion batteries[J]. Journal of Applied Electrochemistry, 2016, 46(3):267-278.
- [20] DONG T, MU P, ZHANG S, et al. How do polymer binders assist transition metal oxide cathodes to address the challenge of high-voltage lithium battery applications?[J].Electrochemical Energy Reviews, 2021, 4(3):545-565.
- [21] GUO J, DONG D, WANG J, et al. Silicon-Based Lithium Ion Battery Systems:State-of-the-Art from Half and Full Cell Viewpoint[J]. Advanced Functional Materials, 2021,31(34):2102546-2102610.
- [22] FENG K, LI M, LIU W, et al. Silicon-based anodes for lithium-ion batteries:from fundamentals to practical applications[J]. Small, 2018, 14(8):1702737-1702787.
- [23] YUAN H, HUANG J Q, PENG H J, et al. A review of functional binders in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(31):1802107.
- [24] KUMAGAI S, ABE Y, TOMIOKA M, et al. Suitable binder for Li-ion battery anode produced from rice husk[J]. Scientific Reports, 2021, 11(1):1-13.
- [25] TANG R, ZHENG X, ZHANG Y, et al. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries[J]. Ionics, 2020, 26(12):5889-5896.
- [26] ZHANG Y, WANG X, MA L, et al. Polydopamine blended with polyacrylic acid for silicon anode binder with high electrochemical performance[J]. Powder Technology, 2021,388(1):393-400.
- [27] LUO C, WU X, ZHANG T, et al. A Four-Armed Polyacrylic Acid Homopolymer Binder with Enhanced Performance for SiOx/Graphite Anode[J]. Macromolecular Materials and Engineering, 2021, 306(1):2000525-2000532.
- [28] ZHAO X, YIM C H, DU N, et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in li-ion batteries[J]. Journal of The Electrochemical Society, 2018, 165(5):A1110-A1121.
- [29] JEONG D, SHIM J, SHIN H, et al. Sustainable Lignin-Derived Cross-Linked Graft Polymers as Electrolyte and Binder Materials for Lithium Metal Batteries[J]. ChemSusChem, 2020, 13(10):2642-2649.
- [30] RYNNE O, LEPAGE D, AYMé-PERROT D, et al. Application of a Commercially-Available Fluorine-Free Thermoplastic Elastomer as a Binder for High-Power Li-Ion Battery Electrodes[J]. Journal of The Electrochemical Society, 2019, 166(6):A1140-A1146.
- [31] SU M, LIU S, WAN H, et al. Effect of binders on performance of Si/C composite as anode for Li-ion batteries[J].Ionics, 2019, 25(5):2103-2109.
- [32] LI S, WU Z G, LIU Y M, et al. A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries[J]. Ionics, 2021, 27(4):1829-1836.
- [33] IDUMAH C I. Recent advancements in self-healing polymers, polymer blends, and nanocomposites[J]. Polymers and Polymer Composites, 2021, 29(4):246-258.
- [34] WANG S, URBAN M W. Self-healing polymers[J]. Nature Reviews Materials, 2020, 5(8):562-583.
- [35] KWON Y J, MODIGUNTA J K R, SHANMUGHARAJ A M, et al. Synthesis of self-healing polyurethane and its application in graphene/SnO2-pillared carbon anode materials[J]. Polymers and Polymer Composites, 2020, 28(5):348-355.
- [36] JIAO X, YIN J, XU X, et al. Highly energy-dissipative,fast self-healing binder for stable Si anode in lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(3):2005699-2005705.
- [37] ZHANG G, YANG Y, CHEN Y, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018, 14(29):1801189-1801198.
- [38] MUNAOKA T, YAN X, LOPEZ J, et al. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries[J]. Advanced Energy Materials,2018, 8(14):1703138-1703148.
- [39] NAM J, KIM E, KK R, et al. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries[J]. Scientific reports, 2020, 10(1):1-12.
- [40] ZHAO Y M, YUE F S, LI S C, et al. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries[J]. InfoMat, 2021, 3(5):460-501.
- [41] NGUYEN V A, KUSS C. Conducting polymer-based binders for lithium-ion batteries and beyond[J]. Journal of the Electrochemical Society, 2020, 167(6):065501-065515.
- [42] ZHENG T, ZHANG T, DE LA FUENTE M S, et al. Aqueous emulsion of conductive polymer binders for Si anode materials in lithium ion batteries[J]. European Polymer Journal, 2019, 114(5):265-270.
- [43] ZHU T, LIU G. Communication-functional conductive polymer binder for practical Si-based electrodes[J]. Journal of the Electrochemical Society, 2021, 168(5):050533-050536.
- [44] CHEN H, ZHENG M, CHEN Y, et al. PANI-based conductive polymer composites as water-soluble binders for nano-silicon anodes in lithium-ion batteries[J]. Ionics, 2021,27(2):587-597.
- [45] TANG R, MA L, ZHANG Y, et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7(9):1992-2000.
- [46] SU Y, FENG X, ZHENG R, et al. Binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithium-ion battery[J]. ACS nano, 2021,15(9):14570-14579.
- [47] ZENG W, WANG L, PENG X, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(11):17023141.1-1702314.8
- [48] KIM E, RAJEEV K K, NAM J, et al. Chitosan-graftedpoly(aniline-co-anthranilic acid)as a water soluble binder to form 3D structures for Si anodes[J]. RSC Advances,2020, 10(13):7643-7653.
- [49] HUANG L H, CHEN D, LI C C, et al. Dispersion homogeneity and electrochemical performance of Si anodes with the addition of various water-based binders[J]. Journal of The Electrochemical Society, 2018, 165(10):A2239-A2246.
- [50] YOU R, HAN X, ZHANG Z, et al. An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries[J]. Ionics, 2019, 25(9):4109-4118.