智能车轨迹预测综述An Overview of Intelligent Vehicle Trajectory Prediction
张峻峰
摘要(Abstract):
车辆的轨迹预测是近几年来智能车的研究热门领域,预测车辆的轨迹有利于缩短智能车做出适当决策的时间,准确可靠的车辆轨迹预测算法可以提前发现潜在的碰撞,降低车辆碰撞风险。归纳总结近年来提出的车辆轨迹预测算法,首先根据交通场景对当前车辆轨迹预测算法进行分类,然后总结车辆轨迹预测算法的使用方法及车辆轨迹预测过程,最后提出当前算法存在的问题,并展望未来的发展方向。
关键词(KeyWords):
基金项目(Foundation): 重庆交通大学研究生科研创新项目(CYS20288);; 重庆市技术创新与应用发展专项-重大主题专项项目(Z2311200003)
作者(Author): 张峻峰
DOI: 10.19822/j.cnki.1671-6329.20210108
参考文献(References):
- [1]Leon F,Gavrilescu M.A Review of Tracking and Trajectory Prediction Methods for Autonomous Driving[J].Mathematics,2021,9(3):1-37.
- [2]Hubmann C,Schulz J,Becker M,et al.Automated Driving in Uncertain Environments:Planning With Interaction and Uncertain Maneuver Prediction[J].IEEE Transactions on Intelligent Vehicles,2018,3(01):5-17.
- [3]Wang Y,Zhao S,Zhang R,et al.Multi-Vehicle Collaborative Learning for Trajectory Prediction With Spatio-Temporal Tensor Fusion[J].IEEE Transactions on Intelligent Transportation Systems,2020 (99):1-13.
- [4]Casas S,Luo W,Urtasun R.Intent Net:Learning to Predict Intention from Raw Sensor Data[C].2nd Conference on Robot Learning (Co RL) zürich,Switzerland,2018:1-9.
- [5]Lefèvre S,Vasquez D,Laugier C.A survey on motion prediction and risk assessment for intelligent vehicles[J].Robomech Journal,2014,1(1):1.
- [6]Cui H,Radosavljevic V,Chou F,et al.Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks[C].IEEE/nternational Conference on Robotiesand Automation (ICRA),2019.
- [7]Luo W,Yang B,Raquel U[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2018:3569-3577.
- [8]Ma Y,Zhu X,Zhang S,et al.Traffic Predict:Trajectory Prediction for Heterogeneous Traffic-Agents[C].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33:6120-6127.
- [9]Zyner A,Worrall S,Nebot E.Naturalistic Driver Intention and Path Prediction using Recurrent Neural Networks[J].2018,21(4):1584-1594.
- [10]Schreiber M,Hoermann S,Dietmayer K.Long-Term Occupancy Grid Prediction Using Recurrent Neural Networks[C]//2019 International Conference on Robotics and Automation (ICRA),2019:9299-9305.
- [11]Hubmann C,Becker M,Althoff D,et al.Decision making for autonomous driving considering interaction and uncertain prediction of surrounding vehicles[C]//Intelligent Vehicles Symposium.IEEE,2017:1671-1678.
- [12]Li J,Ma H,Tomizuka M.Conditional Generative Neural System for Probabilistic Trajectory Prediction[C]//2019IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE,2019:6150-6156.
- [13]李暾,朱耀堃,吴欣虹,等.基于卡口上下文和深度置信网络的车辆轨迹预测模型研究[J].电子与信息学报,2021,43(5):1323-1330.
- [14]Zeng W,Luo W,Suo S,et al.End-To-End Interpretable Neural Motion Planner[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2019.
- [15]张一鸣,周兵,吴晓建,等.基于前车轨迹预测的高速智能车运动规划[J].汽车工程,2020,042(005):574-580,587.
- [16]Ju C,Zheng W,Cheng L,et al.Interaction-aware Kalman Neural Networks for Trajectory Prediction[C].//2020 IEEEINtelligent Vehicles Synposium (IV),2020.
- [17]Zaman M,Zohrabi N,Abdelwahed S.A CNN-based Path Trajectory Prediction Approach with Safety Constraints[C]//2020 IEEE Transportation Electrification Conference&Expo (ITEC).IEEE,2020:267-272.
- [18]Ding W,Chen J,Shen S.Predicting Vehicle Behaviors Over An Extended Horizon Using Behavior Interaction Network[C]//2019 International Conference on Robotics and Automation (ICRA).IEEE,2019:8634-8640.
- [19]温惠英,张伟罡,赵胜.基于生成对抗网络的车辆换道轨迹预测模型[J].华南理工大学学报(自然科学版),2020,404(05):36-44.
- [20]Deo N,Trivedi M.Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver based LSTMs[C].//2018 IEEE Intelligent Vehicles Symposium (IV),2018.
- [21]Deo N,Trivedi M.Convolutional Social Pooling for Vehicle Trajectory Prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2018:1468-1476.
- [22]Dai S,Li L,Li Z.Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction[J].IEEE Access,2019,7:38287-38296.
- [23]Jeon H,Choi J,Kum D.SCALE-Net:Scalable Vehicle Trajectory Prediction Network under Random Number of Interacting Vehicles via Edge-enhanced Graph Convolutional Neural Network[J].ar Xiv,2002:12609.
- [24]Mo X,Xing Y,Lv C.Interaction-Aware Trajectory Prediction of Connected Vehicles using CNN-LSTM Networks[C].//IECON 2020 The 46th Annual Conference of the IEEEIndustrial Electronics Society,2020:5057-5062.
- [25]Xie G,Shangguan A,Fei R,et al.Motion trajectory prediction based on a CNN-LSTM sequential model[J].Sciece China.Information Sciences,2020,(25):351-357.
- [26]Zhao Z,Fang H,Jin Z,et al.GISNet:Graph-Based Information Sharing Network For Vehicle Trajectory Prediction[C]//2020 Intermational Joint Conference on Nearal Networks (IJCNN),2020.
- [27]Li X,Ying X,Chuah M.GRIP:Graph-based Interactionaware Trajectory Prediction[C]//2019 IEEE Intelligent Transportation Systems Conference-ITSC,2019:3960-3966.
- [28]Zhao T,Xu Y,Monfort M,et al.Multi-Agent Tensor Fusion for Contextual Trajectory Prediction[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2019:12126-12134.
- [29]谢辉,高斌,熊硕,等.结构化道路中动态车辆的轨迹预测[J].汽车安全与节能学报,2019,010(004):413-422.
- [30]Ding W,Shen S.Online Vehicle Trajectory Prediction using Policy Anticipation Network and Optimization-based Context Reasoning[C].//2019 International Conference on Robotics and Automation(ICRA),2019:9610-9616.
- [31]Brechtel S,Gindele T,Dillmann R.Probabilistic DecisionMaking under Uncertainty for Autonomous Driving using Continuous POMDPs[C]//IEEE International Conference on Intelligent Transportation Systems.IEEE,2014:392-399.