汽车主动悬架系统控制方法综述Review on Control Methods of Automotive Active Suspension System
谢志强,刘怡帆,王旭飞,张宁超
摘要(Abstract):
为了深入了解当前汽车主流主动悬架系统的研究现状及其主要控制方法,介绍了电控液压主动悬架、电控空气悬架和电磁主动悬架3种主动悬架系统,分析了PID控制、状态反馈H_∞控制、模糊控制、神经网络控制、滑模控制、自适应控制、鲁棒控制和预测控制等8种主动悬架系统的控制方法。对比不同控制方法的优缺点,提出了当前主动悬架及其控制技术面临着能源消耗大、能量回收率低、仿真研究条件设置理想化、试验设备提供的工况与实际主动悬架的运行工况有差距、多系统融合控制有难度等挑战。最后总结了主动悬架系统控制方法今后的研究方向和发展趋势。
关键词(KeyWords): 主动悬架系统;控制方法;能量回收;融合控制
基金项目(Foundation): 陕西理工大学科研基金项目(SLG RCQD2321)
作者(Author): 谢志强,刘怡帆,王旭飞,张宁超
DOI: 10.19822/j.cnki.1671-6329.20240007
参考文献(References):
- [1]余强,郑慕侨.汽车悬架控制技术的发展[J].汽车技术,1994(9):1-6.
- [2] HROVAT D. Survey of Advanced Suspension Developments and Related Optimal Control Applications[J]. Automatica(Journal of IFAC), 1997, 33(10):1781-1817.
- [3]李仲兴,沈安诚,江洪.电控空气悬架多智能体博弈控制系统研究[J].汽车工程, 2020, 42(6):793-800+831.
- [4] ZHAO R, XIE H, GONG X, et al. Neural Network-Based Adaptive Height Tracking Control of Active Air Suspension System with Magnetorheological Fluid Damper Subject to Uncertain Mass and Input Delay[J]. Sensors, 2023, 24(1):156.
- [5] SUN L, SU L, LI Z, et al. Research on Design and Characteristic of a New Type of Air Suspension System with Magnetic Negative Quasi-Zero Stiffness[J]. The Journal of Automobile Engineering, 2024, 238(2-3):374-384.
- [6] WANG W B, LIU S, ZHAO D X, et al. Approximation-Free Output Feedback Control for Hydraulic Active Suspensions with Prescribed Performance[J]. Nonlinear Dynamics, 2023,111(23):21673-21689.
- [7]王军年,刘哲,孟令帅,等.兼具馈能与主动抗侧倾功能的电控液压悬架系统设计与研究[J].汽车工程学报,2023, 13(3):396-407.
- [8]寇发荣,陈若晨,胡凯仑,等.电磁混合主动悬架滑模容错控制研究[J].现代制造工程, 2023(8):66-74.
- [9]孙凤,邢大壮,周冉,等.考虑能耗的电磁主动悬架LQR控制策略[J].西南交通大学学报, 2023, 58(4):754-760+798.
- [10]刘锦超,李军伟,陈斌,等.乘用车电控空气悬架高度控制策略[J].液压与气动, 2024, 48(2):108-115.
- [11]杨辉.汽车电控悬架的现状及趋势[J].装备制造技术,2013(4):204-206.
- [12]殷珺,罗建南,喻凡.汽车电磁式主动悬架技术综述[J].机械设计与研究, 2020, 36(1):161-168.
- [13]凌晨.全主动悬架的产业化应用综述[J].汽车工业研究,2023(3):22-25.
- [14]詹长书,苏立庆.基于粒子群优化的主动悬架PID控制策略[J].科学技术与工程, 2022, 22(10):4180-4186.
- [15] MA S, LI Y, TONG S. Research on Control Strategy of Seven-DOF Vehicle Active Suspension System Based on Co-Simulation[J/OL]. Measurement and Control, 2023, 56(7-8). https://doi.org/10.1177/00202940231154.
- [16] HU Y, LIU J, WANG Z, et al. Research on Electric Oil–Pneumatic Active Suspension Based on Fractional-Order PID Position Control[J]. Sensors, 2024, 24(5):1644.
- [17] PARVEZ Y, CHAUHAN N R, SRIVASTAVA M. Vibration Control and Comparative Analysis of Passive and Active Suspension Systems Using PID Controller with Particle Swarm Optimization[J]. Journal of the Institution of Engineers(India):Series C, 2024:1-19.
- [18] JIN X, WANG J, SUN S, et al. Design of Constrained Robust Controller for Active Suspension of In-WheelDrive Electric Vehicles[J]. Mathematics, 2021, 9(3):249.
- [19]李杰,贾长旺,成林海,等.脉冲路面下电动汽车主动悬架状态反馈H∞控制[J].湖南大学学报(自然科学版),2022, 49(8):12-20.
- [20]王刚,李昆鹏,景晖,等.基于Q学习的整车主动悬架免参数H_∞控制[J].汽车工程, 2023, 45(12):2260-2271.
- [21] ARIVAZHAGAN A, ARUNACHALAM K. Combined Input-Output Finite-time Stability with H∞Static Outputfeedback Control Approach for Active Suspension[J]. IETE Journal of Research, 2023, 69(8):5473-5483.
- [22] WEI C Y. Modeling and Simulation of Active Half-vehicle Suspension Based on a New Output-feedback H∞Controller[J]. International Journal of Control, Automation and Systems, 2024, 22(3):775-784.
- [23] ZHANG P, YUE H J, SHI Z Y, et al. A Fuzzy PID Algorithm-Based Attitude Control Method of SuspensionType Small Rail Vehicles[J]. Journal of Vibration Engineering&Technologies, 2021, 10(1):1-20.
- [24] KHAN M A, HAROON S, AHMAD E, et al. Active Slip Control of a Vehicle Using Fuzzy Control and Active Suspension[J]. Automatika, 2021, 62(3-4):386-396.
- [25] HAN S Y, DONG J F, ZHOU J, et al. Adaptive Fuzzy PID Control Strategy for Vehicle Active Suspension Based on Road Evaluation[J]. Electronics, 2022, 11(6):921.
- [26] YIN Z, SU R, MA X. Dynamic Responses of 8-DoF Vehicle with Active Suspension:Fuzzy-PID Control[J].World Electric Vehicle Journal, 2023, 14(9):249.
- [27] JI G G, ZHANG L D, SHAN M Y, et al. Enhanced Variable Universe Fuzzy PID Control of the Active Suspension Based on Expansion Factor Parameters Adaption and Genetic Algorithm[J]. Engineering Research Express, 2023, 5(3):035007.
- [28]薛文平,张春玲.基于遗传算法的汽车主动悬架变论域模糊PID控制[J].江苏大学学报(自然科学版), 2024, 45(1):8-15.
- [29] MUSTAFA Y I G, LI X, WANG H. A New Neural Network-Based Adaptive Time-Delay Control for Nonlinear Car Active Suspension System[J]. Studies in Informatics and Control, 2022, 31(4):13-24.
- [30] ZHAO W, GU L. Adaptive PID Controller for Active Suspension Using Radial Basis Function Neural Networks[J].Actuators, 2023, 12(12):437.
- [31] MINH C H, KWAN K A. Extended State Observer-Based Adaptive Neural Networks Backstepping Control for Pneumatic Active Suspension with Prescribed Performance Constraint[J]. Applied Sciences, 2023, 13(3):1705-1705.
- [32] HAMZA A, YAHIA N B. Artificial Neural Networks Controller of Active Suspension for Ambulance Based on ISO Standards[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2023, 237(1):34-47.
- [33]杨敏,曹从咏.微型电动汽车主动悬架系统振动控制仿真[J].计算机仿真, 2023, 40(10):167-171.
- [34] CHEN Z, ZHANG J. Adaptive Neural Network Control of Heavy Vehicle Air Suspension with Uncertainties[J].Journal of Vibration Engineering&Technologies, 2024:1-17.
- [35] WEI S, SU X. Optimization of the New Index Reaching Law of the Active Suspension Sliding Mode Controller Based on the Cuckoo Search Algorithm[EB/OL].(2021-10-26)[2024-04-25]. https://www. hindawi. com/journals/complexity/2021/5585327/.
- [36] NGUYEN T. Advance the Efficiency of an Active Suspension System by the Sliding Mode Control Algorithm with Five State Variables[J]. IEEE Access, 2021, 9:164368-164378.
- [37] NGUYEN D N, NGUYEN T A. Enhancing the Performance of the Vehicle Active Suspension System by an Optimal Sliding Mode Control Algorithm.[J]. PloS one,2022, 17(12):e0278387.
- [38] WANG Z, RAN L, KONG B, et al. Suspension System Control Based on Type-2 Fuzzy Sliding Mode Technique[J/OL]. Complex.(2022-01-01)[2024-06-24]. https://doi.org/10.1155/2022/2685573.
- [39] AHMAD S S, ABID M B, SHOEB H. Adaptive Sliding Mode-Based Active Disturbance Rejection Control for Vehicle Suspension Control[J]. Journal of Systems and Control Engineering, 2022, 236(8):1523-1533.
- [40] FLAYYIH M A, HAMZAH M H, HASSAN J M.Nonstandard Backstepping Based Integral Sliding Mode Control of Hydraulically Actuated Active Suspension System[J]. International Journal of Automotive Technology,2023, 24(6):1665-1673.
- [41] ZHANG J, LI K, LI Y. Neuro-Adaptive Optimized Control for Full Active Suspension Systems with Full State Constraints[J]. Neurocomputing, 2021, 458:478-489.
- [42] NICHIELEA T C, UNGURITU M G. Design and Comparisons of Adaptive Harmonic Control for a Quarter-Car Active Suspension[J]. Journal of Automobile Engineering,2022, 236(2-3):343-352.
- [43] DENG Y, GONG M, NI T. Double-Channel EventTriggered Adaptive Optimal Control of Active Suspension Systems[J]. Nonlinear Dynamics, 2022, 108(4):3435-3448.
- [44] AELA A M A, KENNE J P, MINTSA H A. Adaptive Neural Network and Nonlinear Electrohydraulic Active Suspension Control System[J]. Journal of Vibration and Control, 2022, 28(3-4):243-259.
- [45] ZENG Q, ZHAO J. Dynamic Event-Triggered-Dased Adaptive Finite-Time Neural Control for Active Suspension Systems with Displacement Constraint[J].IEEE Transactions on Neural Networks and Learning Systems, 2022,35(3):4047-4057.
- [46] GUO X, WANG J, SUN W. Nonlinear Adaptive Fault-Tolerant Control for Full-car Active Suspension with Velocity Measurement Errors and Full-State Constraints[J]. Journal of the Franklin Institute, 2024, 361(10):106845.
- [47] CAO Z, ZHAO W, HOU X, et al. Multi-Objective Robust Control for Vehicle Active Suspension Systems via Parameterized Controller[J]. IEEE Access, 2019, 8:7455-7465.
- [48] GONG M, YAN X. Robust Control Strategy of Heavy Vehicle Active Suspension Based on Road Level Estimation[J].International Journal of Automotive Technology, 2021, 22(1):141-153.
- [49] DINH G K, NGUYEN H V, LE D T, et al. Extended State Observer Based Robust Control for Active Suspensions with Electro-Hydraulic Actuators[C]//2023 12th International Conference on Control, Automation and Information Sciences(ICCAIS). Hanoi, Vietnam:IEEE, 2023:471-476.
- [50]周辰雨,易莎,余强,等.概率融合的抗侧翻智能主动悬架控制研究[J].控制工程, 2024, 31(1):126-133.
- [51]金贤建,王佳栋,徐利伟,等.轮毂电机驱动电动汽车主动悬架μ综合鲁棒控制研究[J/OL].机械工程学报,(2024-03-27)[2024-06-14]. http://kns. cnki. net/kcms/detail/11.2187.TH.20240322.1652.022.html.
- [52] JOHAN T, ALDO S, PATRICK G, et al. Regionless Explicit Model Predictive Control of Active Suspension Systems with Preview[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6):4877-4888.
- [53] YAO J L, WANG M, LI Z H, et al. Research on Model Predictive Control for Automobile Active Tilt Based on Active Suspension[J]. Energies, 2021, 14(3):671-671.
- [54] NIAONA Z, SHENG Y, GUANGYI W, et al. Fast Distributed Model Predictive Control Method for Active Suspension Systems[J]. Sensors, 2023, 23(6):3357-3357.
- [55] LI Q, CHEN Z, SONG H, et al. Model Predictive Control for Speed-Dependent Active Suspension System with Road Preview Information[J]. Sensors,2024, 24(7):2255.
- [56] FENG J, LIANG J, LU Y, et al. An Integrated Control Framework for Torque Vectoring and Active Suspension System[J]. Chinese Journal of Mechanical Engineering,2024, 37(1):1-12.
- [57]王文林,侯之超,邹军.汽车空气悬架研究进展:零部件与系统[J].汽车安全与节能学报, 2018, 9(1):11-24.